RACAL INSTRUMENTS ${ }^{\text {TM }}$ 1260-138A
 MULTIPLEXER PLUG-IN

Publication No. 980824-138A Rev. A

EADS North America Test and Services,
 a division of EADS North America, Inc.
 4 Goodyear, Irvine, CA 92618

Tel: (800) 722-2528, (949) 859-8999; Fax: (949) 859-7139
info@eads-nadefense.com
sales@eads-nadefense.com
helpdesk@eads-nadefense.com
http://www.eads-nadefense.com

NORTH AMERICA

PUBLICATION DATE: September 18, 2008
Copyright 1999 by EADS North America Test and Services, a division of EADS North America, Inc. Printed in the United States of America. All rights reserved. This book or parts thereof may not be reproduced in any form without written permission of the publisher.

THANK YOU FOR PURCHASING THIS EADS NORTH AMERICA TEST AND SERVICES PRODUCT

For this product, or any other EADS North America Test and Services a division of EADS North America, Inc. ("EADS North America Test and Services") product that incorporates software drivers, you may access our web site to verify and/or download the latest driver versions. The web address for driver downloads is:
http://www.eads-nadefense.com/downloads

If you have any questions about software driver downloads or our privacy policy, please contact us at:
info@eads-nadefense.com

WARRANTY STATEMENT

All EADS North America Test and Services products are designed and manufactured to exacting standards and in full conformance to EADS ISO 9001:2000 processes.

This warranty does not apply to defects resulting from any modification(s) of any product or part without EADS North America Test and Services express written consent, or misuse of any product or part. The warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear, such as mechanical relay life, or failure to follow instructions.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. The remedies provided herein are buyer's sole and exclusive remedies.

For the specific terms of your standard warranty, or optional extended warranty or service agreement, contact your EADS North America Test and Services customer service advisor. Please have the following information available to facilitate service.

1. Product serial number
2. Product model number
3. Your company and contact information

You may contact your customer service advisor by:

E-Mail:	Helpdesk@eads-nadefense.com	
Telephone:	+18007223262	(USA)
Fax:	+19498597309	(USA)

RETURN of PRODUCT

Authorization is required from EADS North America Test and Services before you send us your product for service or calibration. Call or contact the Customer Support Department at 1-800-722-3262 or 1-949-859-8999 or via fax at 1-949-859-7139. We can be reached at: helpdesk@eads-nadefense.com.

PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to EADS North America Test and Services, and shall not, without express written permission of EADS North America Test and Services, be used, in whole or in part to solicit quotations from a competitive source or used for manufacture by anyone other than EADS North America Test and Services. The information herein has been developed at private expense, and may only be used for operation and maintenance reference purposes or for purposes of engineering evaluation and incorporation into technical specifications and other documents which specify procurement of products from EADS North America Test and Services.

DISCLAIMER

Buyer acknowledges and agrees that it is responsible for the operation of the goods purchased and should ensure that they are used properly and in accordance with this handbook and any other instructions provided by Seller. EADS North America Test and Services products are not specifically designed, manufactured or intended to be used as parts, assemblies or components in planning, construction, maintenance or operation of a nuclear facility, or in life support or safety critical applications in which the failure of the EADS North America Test and Services product could create a situation where personal injury or death could occur. Should Buyer purchase EADS North America Test and Services product for such unintended application, Buyer shall indemnify and hold EADS North America Test and Services, its officers, employees, subsidiaries, affiliates and distributors harmless against all claims arising out of a claim for personal injury or death associated with such unintended use.

FOR YOUR SAFETY

Before undertaking any troubleshooting, maintenance or exploratory procedure, read carefully the WARNINGS and CAUTION notices.
CAUTION
RISK OFELECTRICAL SHOCK
DO NOT OPEN

Before operating this instrument:

1. Ensure the proper fuse is in place for the power source to operate.
2. Ensure all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If the instrument:

- fails to operate satisfactorily
- \quad shows visible damage
- has been stored under unfavorable conditions
- has sustained stress

Do not operate until performance is checked by qualified personnel.

Racal Instruments

EC Declaration of Conformity

We
Racal Instruments Inc.
4 Goodyear Street
Irvine, CA 92718
declare under sole responsibility that the
1260-138A Power Switch Plug In Module PIN 407723
conforms to the following Product Specifications:
Safety: EN 61010-1
EMC: EN50081-1
CISPR 11:1990/EN 55011 (1991): Group 1 Class A
IEC 801-2:1991/EN 50082-1 (1992): 4 kV CD, 8 kV AD
IEC 801-3:1984/EN 50082-1 (1992): $3 \mathrm{~V} / \mathrm{m}, 27-500 \mathrm{MHz}$
IEC 801-4:1988/EN 50082-1 (1992): 1 kV

Supplementary Information:

The above specifications are met when the product is installed in a Racal Instruments Adapt-a-Switch Carrier with faceplates installed over all unused slots, as applicable. The carrier is installed in a certified mainframe.

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

Irvine, CA, October 28, 1999

This page was left intentionally blank.

Table of Contents

Chapter 1 1-1
SPECIFICATIONS 1-1
Introduction 1-1
Specifications 1-2
Ordering Information 1-4
Chapter 2 2-1
INSTALLATION INSTRUCTIONS 2-1
Unpacking and Inspection 2-1
Reshipment Instructions 2-1
Installation 2-2
Module Configuration 2-2
Configuration Relays 2-5
Analog Bus Relays 2-6
Connector Pin Assignments 2-6
Front Panel Connector 2-9
Mating Connectors 2-11
Chapter 3 3-1
MODULE OPERATION 3-1
Setting the Module Address 3-1
Operating Modes 3-2
Operating In Message-Based Mode 3-4
Channel Descriptors For The 1260-138A 3-4
Reply To The MOD:LIST? Command 3-5
Operating The 1260-138A in Register-Based Mode 3-5
Configuring Larger Multiplexers 3-8
Creating Very Large Multiplexers With the Analog Bus 3-9
1260-138A Example Code 3-11
Chapter 4 4-1
OPTIONAL ASSEMBLIES 4-1
Chapter 5 5-1
PRODUCT SUPPORT 5-1
Product Support 5-1
Warranty 5-1

List of Figures

Figure 1-1, The 1260-138A... 1-1

Figure 2-1, Single Multiplexer Example (Channels 50 through 57) .. 2-2
Figure 2-2, Block Diagram of 1260-138A.. 2-4
Figure 2-3, 1260-138A Module Configuration Block Diagram. ... 2-5
Figure 2-4, 1260-138A Multiplexer Configuration Block Diagram... 2-5
Figure 2-5, Front-Panel Connector Pin Numbering ... 2-10

Figure 3-1, Front View - Module Addresses for 1 through 6 ... 3-1
Figure 3-2, Front View - Module Addresses for 7 through 12 ... 3-2
Figure 3-3, Message-Based Mode of Operation.. 3-3
Figure 3-4, Register-Based Mode of Operation... 3-3

List of Tables

Table 2-1, Command Arguments for Interconnecting the Muxes 2-6
Table 2-2, Command Arguments for Connecting to the Analog Bus 2-6
Table 2-3, 1260-138A Front-Panel Connections for J200 2-7
Table 3-1, Control Register Channel Assignments. 3-7

DOCUMENT CHANGE HISTORY

Revision	Date	Description of Change
A	$9 / 18 / 08$	Revised per EO 29391 Revised format to current standards. Company name revised throughout manual. Manual now revision letter controlled. Added Document Change History Page v.

This page was left intentionally blank.

Chapter 1 SPECIFICATIONS

Introduction

The $1260-138 \mathrm{~A}$ is a plug-in switch module developed for the 1260-100 Adapt-a-Switch Platform. The 1260-138A includes the following features:

- Standard Adapt-a-Switch plug-in design, providing for ease of replacement.
- Data-driven embedded descriptor, allowing immediate use with any Option-01T switch controller, regardless of firmware revision level.
- Capability of combining multiple multiplexers on-board to form large multiplexers.
- Analog bus for combining multiple 1260-138A plug-ins, to form very large multplexers.

Figure 1-1, The 1260-138A

Specifications

Bandwidth (-3 dB)		
1×8	> 85 MHz	
1×64	$>4 \mathrm{MHz}$	
Insertion Loss (1×8)		
100KHz:	< 0.1 dB	
1MHz:	$<0.2 \mathrm{~dB}$	
10 MHz :	$<1.7 \mathrm{~dB}$	
30 MHz :	$<1.7 \mathrm{~dB}$	
Isolation (1 x 8)		
100 KHz :	> 88 dB	
1 MHz :	$>78 \mathrm{~dB}$	
10MHz:	$>44 \mathrm{~dB}$	
30 MHz :	$>40 \mathrm{~dB}$	
Crosstalk (1×8)		
100 KHz :	<-63 dB	
1MHz:	$<-63 \mathrm{~dB}$	
10MHz:	<-41 dB	
30MHz:	$<-34 \mathrm{~dB}$	
Switching Voltage		
AC	250 V, Max	
DC	220 V, Max	
Switching Current		
AC	2 A, Max	
DC	2 A, Max	
Switching Power		
AC	125 VA, Max	
DC	60 W, Max	
Path resistance	1 $\times 8$: $500 \mathrm{~m} \Omega$	
	$1 \times 40: 650 \mathrm{~m} \Omega$	
	$1 \times 64: 800 \mathrm{~m} \Omega$	
Thermal EMF	< 10 uV	
Capacitance		
(1x8) Channel to Chassis		$<150 \mathrm{pF}$
(1×8) Open Channel		$<5 \mathrm{pF}$
(1×8) High to Low		< 110 pF
(1×64) High to Low		< 400 pF
Insulation resistance	$>10^{9} \Omega$	
Relay Settling Time	< 10 ms	

Shock	$30 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$ sine wave
Vibration	0.013 in. P-P, 5-55 Hz
Bench Handling	4 in., 45°
Cooling	See 1260-100 cooling data
Temperature	
Operating	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Non-operating	$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Relative Humidity	$85 \%+5 \%$ non-condensing at $<30^{\circ} \mathrm{C}$
Altitude	
Operating	10,000 feet
Non-operating	15,000 feet
Power Requirements	
+5 VDC	150mA +30 mA per energized relay (2A Max.)
MTBF	
MIL-HDBK-217E	183,169 hours
Bellcore	154,107 hours
Relay Life Expectancy	
Mechanical	100,000,000 operations
Electrical	100,000 operations at full rated load (resistive)
Weight	$1.0 \mathrm{lb} .(0.45 \mathrm{~kg}$.)
Dimensions	4.5 " $\mathrm{H} \times 0.75$ "W $\times 9.5$ "

Ordering Information

Listed below are part numbers for both the 1260-138A switch module and available mating connector accessories. Each 1260-138A uses a single mating connector.

ITEM	DESCRIPTION	PART \#
1260-138A Switch Module	Switch Module, 8 (1X8) 2 Wire Mux, 2 A Consists of: P/N 405156 PCB Assembly P/N 980824-138A Manual	407723
160-pin Mating Connector	160 Pin Conn. Kit with pins	407664
Cable Assy. 6ft, Sleeved	160 Pin Cable Assy, 6 Ft, 24 AWG	407408-001
Additional Manual	1260-138A Manual	980824-138A

Chapter 2

INSTALLATION INSTRUCTIONS

Unpacking and Inspection

1. Remove the 1260-138A module and inspect it for damage. If any damage is apparent, inform the carrier immediately. Retain shipping carton and packing material for the carrier's inspection.
2. Verify that the pieces in the package you received contain the correct 1260-138A module option and the 1260-138A Users Manual. Notify EADS North America Test and Services, if the module appears damaged in any way. Do not attempt to install a damaged module into a VXI chassis.
3. The 1260-138A module is shipped in an anti-static bag to prevent electrostatic damage to the module. Do not remove the module from the anti-static bag unless it is in a staticcontrolled area.
4. Use the original packing when returning the switching module to EADS North America Test and Services, for calibration or servicing. The original shipping carton and the instrument's plastic foam will provide the necessary support for safe reshipment.
5. If the original packing material is unavailable, wrap the switching module in an ESD Shielding bag and use plastic spray foam to surround and protect the instrument.
6. Reship in either the original or a new shipping carton.

Installation

Module Configuration

Installation of the 1260-138A Switching Module into a 1260100/101 Adapt-a-Switch Carrier assembly is described in the "Installation" section of the 1260-100/101 Adapt-a-Switch Carrier manual.

For installation of the 1260-138A into a 1256 Switching System, refer to the 1256 User Manual.

The 1260-138A contains eight 1×8 multiplexers, numbered from 0 through 7. Each multiplexer (mux) is made up of eight relays, referred to as channels. Figure 2-1 shows an example of one of these multiplexers (multiplexer 5). In this example, the inputs are channels 50 through 57 . The user may close one or more relays to connect the inputs to the common output.

Figure 2-1, Single Multiplexer Example (Channels 50 through 57)

Since each channel is independently controlled, the user can simultaneously connect any combination of mux inputs to the common output of the same multiplexer.

For example, referring to Figure 2-1, the user may connect the channel 51 and channel 53 inputs to the common output by closing the channel 51 and channel 53 relays at the same time. Taking this concept further, the user could even close the relays for channels 50 through 57 all at the same time, connecting all of this multiplexer's inputs to its common output.

Figure 2-1 shows just one of the eight multiplexers on the 1260-138A. All eight multiplexers operate independently. For a block diagram of the entire 1260-138A, refer to Figure 2-2. When reviewing this diagram, keep in mind that the 1260-138A is a twowire switch product (each relay has two poles). Most applications use one pole to switch the high side of a differential signal, and the other pole to switch the low side.

NOTE: Numbers in parentheses refer to channel numbers to use in commands.
Figure 2-2, Block Diagram of 1260-138A

Configuration Relays

The 1260-138A is configurable for a variety of applications. Referring back to Figure 2-2, there are seven configuration relays, numbered K64 through K70. Figure 2-3 shows these relays from a different perspective, identifying them with their channel numbers (100, 200, etc.). Figure 2-4 shows a detailed view of the components inside a multiplexer.

Figure 2-3, 1260-138A Module Configuration Block Diagram.

Figure 2-4, 1260-138A Multiplexer Configuration Block Diagram

Table 2-1 shows the command arguments (channel numbers) for connecting mux pairs together. For further details, refer to the section entitled "Configuring Larger Multiplexers" in Chapter 3.

Table 2-1, Command Arguments for Interconnecting the Muxes

	MUX			
Interconnection	$\begin{array}{c}\text { Command } \\ \text { Argument } \\ \text { (Channel) }\end{array}$	Interconnect	Pelay	

Analog Bus Relays

For even greater flexibility, the 1260-138A takes full advantage of the analog bus found in the 1260-100/101 Adapt-a-Switch Carrier and 1256 Switching System. Four analog bus relays (K71 through K74 in the lower left-hand corner of Figure 2-2) connect the output of multiplexer 7 to any of the four analog bus pairs. For details on using the analog bus, refer to the section "Creating Very Large Multiplexers with the Analog Bus" in Chapter 3.

Table 2-2 shows the command arguments (channel numbers) for connecting the mux 7 output to the analog bus.

Table 2-2, Command Arguments for Connecting to the Analog Bus

Analog Bus	Command Argument (Channel)	Interconnect Relay	Pin	
	(1000)		A27	Low
0	(1001)	K73	A27	A28
1	(1002)	K72	A27	A28
2	(1003)	K71	A27	A28
3				

Connector Pin Assignments

Table 2-3 provides the pin assignments for the front panel connector.

Table 2-3, 1260-138A Front-Panel Connections for J200

Mux	Channel	Pin	
		High	Low
0	Mux 0 Common	A3	A4
0	0	D2	E2
0	1	E1	D1
0	2	A2	A1
0	3	C1	B1
0	4	C2	B2
0	5	B3	C3
0	6	E3	D3
0	7	D4	E4
1	Mux 1 Common	A5	A6
1	10	C4	B4
1	11	E5	D5
1	12	B7	C7
1	13	A8	A7
1	14	D19	E19
1	15	B13	C13
1	16	A12	A11
1	17	B11	C11
2	Mux 2 Common	A9	A10
2	20	D12	E12
2	21	E11	D11
2	22	C10	B10
2	23	D10	E10
2	24	E9	D9
2	25	C8	B8
2	26	D6	E6
2	27	C6	B6
3	Mux 3 Common	A13	A14
3	30	D8	E8
3	31	C14	B14
3	32	D14	E14
3	32	E13	D13
3	34	C12	B12
3	35	E15	D15
3	36	D16	E16
3	37	C16	B16
4	Mux 4 Common	C15	B15
4	40	D18	E18

Mux	Channel	Pin	
		High	Low
4	41	C18	B18
4	42	A16	A15
4	43	B17	C17
4	44	A18	A17
4	45	D20	E20
4	46	A24	A23
4	47	B23	C23
5	Mux 5 Common	C19	B19
5	50	D26	E26
5	51	E25	D25
5	52	C24	B24
5	53	D24	E24
5	54	E23	D23
5	55	C22	B22
5	56	D22	E22
5	57	C20	B20
6	Mux 6 Common	C25	B25
6	60	E21	D21
6	61	C21	B21
6	62	C28	B28
6	63	D28	E28
6	64	D29	E29
6	65	E30	D30
6	66	C30	B30
6	67	D31	E31
7	Mux 7 Common	A27	A28
7	70	E32	D32
7	71	C32	B32
7	72	E27	D27
7	73	C26	B26
7	74	B29	C29
7	75	A30	A29
7	76	B31	C31
7	77	A32	A31
---	Ground	A19	---
---	Ground	A20	---
---	Ground	A21	---
---	Ground	A22	---
---	Ground	A25	---
---	Ground	A26	---

Mux	Channel	Pin	
		High	Low
---	Ground	B5	---
---	Ground	B9	---
---	Ground	B27	---
---	Ground	C5	---
---	Ground	C9	---
---	Ground	C27	---
---	Ground	D7	---
---	Ground	D17	---
---	Ground	E7	---
---	Ground	E17	---

Front Panel Connector

The 1260-138A has one front-panel connector, labeled J200. It is a 160-pin, modified DIN style connector, with 0.025 " square posts as pins. It has one pin for each input and one for each output. See Figure 2-5 for the physical pin arrangement. Table 2-3 shows the mapping of channel numbers to connector pins. For information about mating connectors and accessories, see the "Mating Connectors" section at the end of this chapter.

Figure 2-5, Front-Panel Connector Pin Numbering

Mating Connectors

The following mating connectors and accessories are available:
P/N 407408-001: 160-Pin Cable Assembly, 6 Ft., 24 AWG: This six-foot cable is constructed with 24 AWG stranded wire. One end has the mating connector for the 1260-138A. The other end is unterminated. Refer to Table 2-1 for channel-to-pin mapping information.

P/N 407664: 160-Pin Connector Kit with Pins. This kit provides the mating connector for the 1260-138A, including housing, strain relief, and 170 crimp pins. After crimping, the pins snap into the connector housing, providing positive retention.

P/N 991033: ERNI Tool Kit. This kit includes the crimp tool and extractor.

P/N 990898: Insertion Hand Tool.
P/N 990899: Extraction Tool.

This page was left intentionally blank.

Chapter 3

The Option-01T switch controller identifies each Adapt-a-Switch plug-in or conventional 1260-Series module by a module address that is unique to that module. The module address is a number from 1 through 12, inclusive.

The module address assigned to the 1260-138A is determined by the carrier slot into which the 1260-138A is inserted, and by the position of the logical address DIP switch on the carrier side panel. The logical address switch has two settings:

- 1-6: When the switch is set to this position, the module addresses of the plug-ins in the 1260-100 Carrier are from 1 through 6 . The module with address 1 is in the left slot of the top row. The plug-ins are addressed in the following pattern:

Figure 3-1, Front View - Module Addresses for 1 through 6

- 7-12: When the switch is set to this position, the module addresses of the plug-ins in the 1260-100 Carrier are from 7 through 12, in the following pattern:

Figure 3-2, Front View - Module Addresses for 7 through 12

When setting module addresses for Adapt-a-Switch Carriers and conventional 1260 -Series modules, be sure that no address is used by more than one plug-in or 1260 -Series C-Size switching module.

For instructions on setting module addresses for a conventional 1260-Series module, see the label on the side panel of the module.

Operating Modes

The 1260-138A may be operated either in message-based mode or in register-based mode.

In message-based mode, the 1260-01T switch controller interprets commands sent by the slot 0 controller, and determines the appropriate data to send to the control registers of the 1260-138A module.

A conceptual view of the message-based mode of operation is shown in Figure 3-3 below.

Figure 3-3, Message-Based Mode of Operation

In the register-based mode, the user writes directly to the control registers on the 1260-138A module. The 1260-01T command module does not monitor these operations, and does not keep track of the relay states on the 1260-138A module in this mode.

A conceptual view of the register-based mode is shown in Figure 3-4 below.

Figure 3-4, Register-Based Mode of Operation

Since the 1260-01T switch controller does not keep track of relay states during the register-based mode, it is advisable to use either the message-based or the register-based mode, and continue to use the same mode throughout the application program.

In general, the message-based mode of operation is easier to use with utility software such as the National Instruments VXI Interactive Control (VIC) program. The message-based mode allows the user to send ASCII text commands to the 1260-01T and to read replies from the 1260-01T. In addition, some features, such as the SCAN list, are available only in the message-based mode of operation.

The register-based mode provides faster control of relay channels. In this mode, relay operations are processed in less than 9 microseconds, not counting relay settling time or software overhead inherent in I/O libraries such as VISA. To determine the relay settling time, refer to Relay Settling Time in the Specifications section.

Consult the 1260-01T User's Manual for a comparison of the message-based and register-based modes of operation.

Operating In Message-Based Mode

Channel Descriptors For The 1260-138A

The standard 1260-01T commands are used to operate the $1260-$ 138A module. These commands are described in the 1260-01T User's Manual.

Each 1260-01T relay command uses a channel descriptor to select the channel(s) of interest. The syntax for a channel descriptor is the same for all 1260 series modules. In general, the following syntax is used to select a single channel:
(@ <module address> (<channel>))

Where:

- <module address> is the address of the 1260-138A module. This is a number is in the range from 1 through 12, inclusive.
- <channel> is the 1260-138A channel to operate. They are numbers from 0-7, 10-17, 20-27, etc. See Figure 2-1 and Table 2-1.

Multiple individual channels may be specified using the following channel descriptor syntax:

$$
\begin{aligned}
& \text { @ <module address> (<chan1> , <chan2> } \\
& \text {, . . ., <chanN>)) }
\end{aligned}
$$

A range of channels may be specified using the following channel descriptor syntax:

```
@ <module address> ( <first channel> :
<last channel> ))
```

The following examples illustrate the use of the channel descriptors for the 1260-138A:

OPEN (@8(0)) Open channel 0 on the 1260-138A that has module address 8 .

CLOSE (@8(0,3)) Close channels 0 and 3 on the 1260-138A that has module address 8.

CLOSE (@2(10:13)) Close channels 10 through 13 inclusive on the 1260-138A that has module address 2.

Reply To The MOD:LIST? Command

Operating The 1260-138A in Register-Based Mode

The 1260-01T returns a reply to the MOD:LIST? command. This reply is unique for each different 1260 series switch module. The syntax for the reply is:
<module address> : <module-specific identification string>
The <module-specific identification string> for the 1260-138A is:
1260-138 8 1X8 2A MUX
So, for a 1260-138A whose <module address> is set to 8, the reply to this query would be:

$$
\text { 8: 1260-138 } 8 \text { 1X8 2A MUX }
$$

In register-based mode, the 1260-138A is operated by directly writing and reading control registers on the 1260-138A module. When a control register is written to, all channels controlled by that register are operated simultaneously. For the channel assignments for each control register, see Table 3-1.

The control registers are located in the VXIbus A24 Address Space. The A24 address for a control register depends on:

1. The A24 Address Offset assigned to the 1260-01T module by the Resource Manager program. The Resource Manager program is provided by the VXIbus slot-0 controller vendor. The A24 Address Offset is placed into the "Offset Register" of the $1260-01 \mathrm{~T}$ by the Resource Manager.
2. The <module address> of the 1260-138A module. This is a value in the range from 1 and 12 inclusive.
3. The 1260-138A control register to be written to or read from. Each control register on the 1260-138A has a unique address.

The base A24 address for the 1260-138A module may be calculated by:
(A24 Offset of the 1260-01T) + (1024 x Module Address of 1260-138A).

The A24 address offset is usually expressed in hexadecimal. A typical value of 204000_{16} is used in the examples that follow.

A 1260-138A with a module address of 7 would have the base A24 address computed as follows:

Base A24 Address of 1260-138A $=204000_{16}+\left(400_{16} \times 7_{10}\right)$

$$
=205 \mathrm{COO}_{16}
$$

The control registers for Adapt-a-Switch plug-ins and conventional 1260-Series modules are always on odd-numbered A24 addresses. The three control registers for the 1260-138A reside at the first three odd-numbered A24 addresses for the module:
(Base A24 Address of 1260-138A) $+1=$ Control Register 0
(Base A24 Address of 1260-138A) +3 = Control Register 1
(Base A24 Address of 1260-138A) $+5=$ Control Register 2
So, for our example, the first three control registers are located at:
205C01 Control Register 0, controls channels 64, 65, 66, 67, 70, 72, 73, 74

205C03 Control Register 1, controls channels $76,62,63,1000,700,71,75,77$

205C05 Control Register 2, controls channels 57, 600, 60, 61, 51, 50, 500, 47.

Table 3-1 shows the channel assignments for each control register.

Table 3-1, Control Register Channel Assignments

Control Register	Channels								
	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	
0	64	65	66	67	70	72	73	74	
1	76	62	63	1000	700	71	75	77	
2	57	600	60	61	51	50	500	47	
3	46	41	55	56	54	53	52	1001	
4	36	37	400	40	42	43	44	45	
5	16	15	1002	31	32	33	34	35	
6	27	26	25	22	21	20	200	17	
7	3	4	5	14	13	1003	30	300	
8	2	7	23	24	100	10	11	12	
9	6	Unused	Unused	Unused	Unused	Unused	0	1	

Setting a control bit to 1 closes the corresponding channel, and clearing the bit to zero opens the corresponding channel. Thus, if you write the value 10000101 binary $=133$ decimal $=85$ hexadecimal to Control Register 0, channels 64, 72, and 74 will close, while channels $65,66,67,70$, and 73 will open.

The present control register value may be read back by reading an 8 -bit value from the control register address. The value is inverted. In other words, the eight-bit value read back is the one's complement of the value written.

If you want to change the state of a single relay without affecting the present state of the other relays controlled by the control register, you must:

1. Read the control register.
2. Invert the bits (perform a one's complement on the register data).
3. Perform a bit-wise AND operation, leaving all but the specific control register bit for the relay to change.
4. To open: continue to step 5. To close: OR in the bit for the relay to close.
5. Write the modified value back to the control register.

For example, to close channel 63:

1. Read Control Register 1 (this register controls 76, 62, 63, $1000,700,71,75$, and 77 with channel 77 represented by the LSB).
2. Invert the bits in the value read in step 1.
3. AND with 11011111 binary (the zero is in the position corresponding to channel 63).
4. OR with 00100000 binary.
5. Write the value to Control Register 1.

The VISA I/O library may be used to control the module. The VISA function viOut8() is used to write a single 8 -bit byte to a control register, while viIn8() is used to read a single 8 -bit byte from the control register. The following code example shows the use of viOut8() to update the 1260-138A module.

Configuring
 Larger Multiplexers

The $1260-138 \mathrm{~A}$ is normally configured as eight 1×8 multiplexers. However, the plug-in contains seven special configuration relays that interconnect two or more multiplexers to form larger multiplexers. Figure 2-1 shows these relays, identified as K64 through K70. Table 3-1 provides the control register access information for these relays. Each configuration relay connects the commons of two multiplexers together.

Configuration may be done "on-the-fly" if desired.
As a configuration example, suppose you require two 1×16 multiplexes and one 1×24 multiplexer. You may form these multiplexers from a 1260-138A by configuring it as follows:

1. Combine muxes 0 and 1 to form a 1×16 multiplexer. To do this, we must close the relay shown as "Mux 0-1" in Figure 2-1. Referring to Table 3-1, we see that bit 3 of control register 8 controls this configuration relay. To combine the multiplexers, write to the register to set this bit (leave the other bits unchanged).
2. Combine multiplexers 2,3 , and 4 to form a 1×24 multiplexer. To do this, close the "Mux 2-3" and "Mux 3-4" configuration relays (K66 and K67 in Figure 2-1). From Table 3-1 we see that the "Mux 2-3" relay is controlled by bit 0 of control register 1. Also, bit 5 of control register 4 controls the "Mux 3-4" relay. Set both of these bits (without changing any other bits).

Creating Very
Large
Multiplexers With the Analog Bus

The 1260-138A has access to the analog bus of the 1260-100 Carrier. The analog bus can connect multiplexer 0 of one 1260138A to multiplexer 0 of another 1260-138A, providing endless possibilities for creating large multiplexers from two or more plugins.

The analog bus consists of four two-wire paths, numbered as Abus 0 through Abus 3. These paths are accessible from any Adapt-aSwitch Carrier slot. To link multiplexer 0 of one 1260-138A to multiplexer 0 of another 1260-138A, we must connect them both to the same analog bus path.

For example, suppose you wish to create a 1×128 multiplexer. This requires two 1260-138A plug-ins. To configure them as a single 1×128 multiplexer, proceed as follows:

1. Configure the first $1260-138 \mathrm{~A}$ as a 1×64 multiplexer. To do this, close the following configuration relays (shown in Figure 2-1):

> Mux 1-2
> Mux $2-3$
> Mux $3-4$
> Mux $4-5$
> Mux $5-6$
> Mux $6-7$
> Mux $7-8$

Table 3-1 indicates the registers and bit positions used to control these relays. Setting a bit to 1 closes the relay.
2. Configure the second $1260-138 \mathrm{~A}$ as a 1×64 multiplexer. Close the following configuration relays (shown in Figure 21):

Mux 1-2
Mux 2-3
Mux 3-4
Mux 4-5
Mux 5-6
Mux 6-7
Mux 7-8
3. Next, we connect both of these 1×64 multiplexers to the same analog bus path, forming a single 1×128 multiplexer. Close the "Abus 0" relay on the first plug-in. Referring to Table 3-2, we see that this relay is controlled by bit 4 of control register 1 . Set the bit to 1 to close the relay.
4. In the same manner, close the "Abus 0" relay on the second plug-in.

This connects the commons of both 1260-138A plug-ins to Abus 0 , thereby connecting them together. This completes the formation of the 1×128 multiplexer.

Note that, in the above example, paths Abus 1, Abus 2, and Abus 3 are unused. If desired, you may use these independent paths to connect additional groups of plug-ins together.

1260-138A
 Example Code

\#include <visa.h>
/* This example shows a 1260-01T at logical address 16 and a VXI/MXI */
/* interface */
\#define RI1260_01_DESC "VXI::16"
/* For a GPIB-VXI interface, and a logical address of 77 */
/* the descriptor would be: "GPIB-VXI::77" */
/* this example shows a 1260-138A with module address 7 */ \#define MOD_ADDR_138 7

```
void example_operate_1260_138(void)
{
    ViUInt8 creg_val;
    ViBusAddress creg0_addr;
    ViBusAddress creg1_addr;
    ViBusAddress creg2_addr;
    ViSession hdl1260; /* VISA handle to the 1260-01T */
    ViSession hdlRM; /* VISA handle to the resource manager */
    ViStatus error; /* VISA error code */
    /* open the resource manager */
    /* this must be done once in application program */
    error = viOpenDefaultRM (&hdlRM);
    if (error < 0) {
        /* error handling code goes here */
    }
    /* get a handle for the 1260-01T */
    error = viOpen (hdlRM, RI1260_01_DESC, VI_NULL,VI_NULL, &hdl1260);
    if (error < 0) {
    /* error handling code goes here */
    }
```

```
/* form the offset for control register 0 */
/* note that the base A24 Address for the 1260-01T */
/* is already accounted for by VISA calls viIn8() and */
/* viOut8() */
    /* module address shifted 10 places = module address x 1024 */
creg0_addr = (MOD_ADDR_138 << 10) + 1;
creg1_addr = creg0_addr + 2;
creg2_addr = creg1_addr + 2;
/* close channel }63\mathrm{ without affecting the state of */
/* channels 76, 62, 1000, 700, 71, 75, and 77 */
error = viIn8 (hdl1260, VI_A24_SPACE, creg1_addr, &creg_val);
if (error < 0) {
    /* error handling code goes here */
}
/* invert the bits to get the present control register value */
creg_val = ~creg_val;
/* AND to leave every channel except 63 unchanged */
creg_val &= ~ (0x20);
/* OR in the bit to close channel 63 */
creg_val |= 0x20;
/* write the updated control register value */
error = viOut8 (hdl1260, VI_A24_SPACE, creg1_addr, creg_val);
if (error < 0) {
    /* error handling code goes here */
}
/* open channel 47 without affecting channels 57, 600, 60, 51, 59, 500 */
error = viIn8 (hdl1260, VI_A24_SPACE, creg2_addr, &creg_val);
if (error < 0) {
    /* error handling code goes here */
}
/* invert the bits to get the present control register value */
creg_val = ~creg_val;
/* AND to leave every channel except 47 unchanged */
/* leave bit 0 clear to open channel 47 */
creg_val &= ~ (0x01);
/* write the updated control register value */
error = viOut8 (hdl1260, VI_A24_SPACE, creg2_addr, creg_val);
```

```
    if (error < 0) {
        /* error handling code goes here */
    }
    /* close the VISA session */
    error = viClose( hdl1260 );
    if (error < 0) {
        /* error handling code goes here */
    }
}
```

This page was left intentionally blank.

Chapter 4

OPTIONAL ASSEMBLIES

407664 Connector Kit, 160 Pin Crimp 4-3
407408-001 Cable Assy, 160 Pin, 6 ft, 24AWG. 4-4

This page was left intentionally blank.

Assembly 407664
Connector kit, 160 Pin, CrimpRev Date 7/30/98 Revision A

$\#$	Component	Description	U/M	Qty Reqd.	REF
1	$602258-116$	CON-CAB-RCP160C,100S	-E EA	1.000	
2	$602258-900$	TRMCRP-SNP-U-F26-20G	-E EA	170.000	

$\#$	Component	Description	U/M	Qty Reqd	Ref
1	500104	TBGSRK-POF. 750ID-CLEAR	FT	.00001	
2	500319	CAMT-USH-80C24G-1STR	FT	14.00000	
3	456673	BRKT,STRAIN RELIEF, 160 PIN	EA	1.00000	
4	$602258-116$	CON-CAB-RCP160C.100S	EA	1.00000	
5	$602258-900$	TRMCRP-SNP-U-F26-20G	EA	160.00000	
6	610777	TIE-CA-LKG-.062-. 750	EA	4.00000	
7	616303	S1MPPAN-M2. 5x0. 45X08	EA	2.00000	
8	617041	NT1IIBXM2 .5-0. 50-STL	EA	2.00000	
9	617127	W1S004. 202D. 020T.115	EA	2.00000	
10	M23053/5-109-4	TBGSRK-POF. 750ID-YELLOW	FT	.00001	
11	M23053/5-109-0	TBGSRK-POF. 750ID-BLACK	FT	.00001	

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

FROM	TO	$\begin{array}{c}\text { CONDUCTOR TYPE, } \\ \text { GAUGE, COLOR }\end{array}$	PART NO.	$\begin{array}{c}\text { WIRE } \\ \text { LENGTH }\end{array}$	REFERENCE
P23-A	P23-A	CABLE 1 WHT/BRN/GRN			
P24-A					
		CABLE 1 WRT/RED/YEL			

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

FROM	TO	$\begin{array}{c}\text { CONDUCTOR TYPE, } \\ \text { GAUGE, COLOR }\end{array}$	PART NO.	$\begin{array}{c}\text { WIRE } \\ \text { LENGTH }\end{array}$	REFERENCE
P7-A	P7-A	CABLE 1 WHT/BRN/GRN			
P8-A	CABLE 1 WHT/RED/YEL				

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

ENGINEERING WIRE LIST

FROM	TO	$\begin{array}{c}\text { CONDUCTOR TYPE, } \\ \text { GAUGE, COLOR }\end{array}$	PART NO.	$\begin{array}{c}\text { WIRE } \\ \text { LENGTH }\end{array}$	REFERENCE
P7-A	P7-A	CABLE 2 WHT/BRN/GRN			
P8-A	CABLE 2 WHT/RED/YEL				

ENGINEERING WIRE LIST

This page was left intentionally blank.

Chapter 5

PRODUCT SUPPORT

Product Support

Warranty

EADS North America Test and Services, has a complete Service and Parts Department. If you need technical assistance or should it be necessary to return your product for repair or calibration, call 1-800-722-3262. If parts are required to repair the product at your facility, call 1-949-859-8999 and ask for the Parts Department.

For worldwide support and the office closest to your facility, refer to the website for the most complete information http://www.eadsnadefense.com.

Use the original packing material when returning the 1260-138A to EADS North America Test and Services, for calibration or servicing. The original shipping container and associated packaging material will provide the necessary protection for safe reshipment.

If the original packing material is unavailable, contact EADS North America Test and Services, Customer Service at 1-800-722-3262 for information.

This page was left intentionally blank.

